130 好巧的毕论选题(2/4)
随着数学家进一步抽象,KLS猜想可以理解为这个西瓜在高维空间中的形状就是一个封装着气体的容器,找到最佳切面就是寻找到这个容器的瓶颈。想象一个,如果西瓜变成一个哑铃形状的容器,里面有一个气体分子在其中随机运动,那么哑铃中间连接部分越细,分子就越难跑到另一侧。
所以现在韩教授真正要解决的问题就是,找出在高维空间中这个凸的容器最细的地方到底能有多细。
说的更简单更粗暴就是要证明是否存在这么一个常数c,在任意维度这个常数c都是固定数值,如果有那么就说明这个西瓜在高维空间不可能像一个哑铃那样,两边大,中间连接部分可以非常细。因为这个常数c决定了其形态不可能有那么细的连接部分。
而如果无法证明这一点,那么一切就皆有可能,气体分子可能会在高维空间下长时间在容器的一侧运动,很难到另一侧去
所以解决了这个问题,就能对现有的计算机随机行走时间相应优化。
如果放到数学上,这个命题如果得到解决,就能加速了对近似凸体高维空间下的体积研究。
但事实上这虽然是个几何问题,可之前关于这个问题研究的突破,都是计算机界的科学家们做出的贡献。
早在九年前,就有一位计算机学家在研究这个问题时利用随机定位技术,来降低这个问题的维度上界,但效果并不明显。
到了六年前华盛顿大学的两位博士改进了前人的随机定位技术,进一步将KLS因子,也就是用于描述瓶颈是否存在的因子,降低到了维度的四次根。
如果他们能将唯独的幂指数降低到几乎为0,那么这个数的0次幂总是等于1,也就证明了KLS因子是一个与维度无关的常数,从而彻底终结这个问题,这两位也的确尝试过,但最终没能成功,其证明过程被证明是错误的,所以只是给后人留下了一些可供借鉴的想法。
现在韩教授申请的课题就是解决这个问题。
对于其他人来说这只是一份普普通通的开题报告,但在宁为看过之后,突然脑子里灵光一闪,因为他发现这个问题完全可以用他最近刚刚梳理过一遍的统计学知识来解决。
是的,不需要用代数几何、也不需要太高深的计算机技术,只需要用到统计学的内容,就能解决这道难题。而如果解决掉这个问题,他的统计学毕业论文也能完成了,同时老韩大概近期也就无事可做了,正好能遂了他的心意重新加入EDA项目组。
是的,这一刻宁为只觉得这个世界有些事情太巧了。
遍寻了好久的毕业论文命题,竟然因为之前跟余兴伟一次随口的约定,然后要来了一个开题报告就解决了。
不说别的,如果他此时大脑内的构思经得起验证,数学界又的确还没解决这个猜想的话,那么这篇论文别说SCI一区了,再发个顶刊似乎问题也不大。
更重要的是,实验室好像又能多个成果了。
宁为下意识的看了看韩教授申请的经费,三十万。
“额,陆教授,我突然想到点急事,先回寝室了。其他事情就按照您考虑的办吧,我都没问题。”宁为说道,顺手将韩教授的开题报告放回到陆昌斌的桌上。
“啊?急事?”陆昌斌有些疑惑,这小家伙刚刚还在不紧不慢的看着老韩的报告,怎么突然就有急事了?
“对呀,很急。”宁为道。
“行,那你赶紧去吧。”陆昌斌连忙道。
“那陆教授再见。”
……
宁为匆匆赶回寝室,寝室里三个人也正在桌前看书的看书,写论文的写论文。
本章未完,点击下一页继续阅读。